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Abstract

In this paper we investigate an optimal investment problem under loss aversion (S-shaped

utility) and with trading and Value-at-Risk (VaR) constraints faced by a defined contribution

(DC) pension fund manager. We apply the concavification and dual control method to solve the

problem and derive the closed-form representation of the optimal terminal wealth in terms of a

controlled dual state variable. We propose a simple and effective algorithm for computing the

initial dual state value, the Lagrange multiplier and the optimal terminal wealth. Theoretical

and numerical results show that the VaR constraint can significantly impact the distribution of

the optimal terminal wealth and may greatly reduce the risk of losses in bad economic states

due to loss aversion.
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1 Introduction

Most literature on investment problems focus on maximizing the expectation of a smooth utility

of terminal wealth. Loss aversion, first proposed by Kahneman and Tversky (1979) within the

framework of prospect theory (PT), is defined over gains and losses in wealth relative to a pre-

defined reference point, rather than in terms of changes in the absolute level of total wealth itself.

Every investor has a reference point that defines relative ‘losses’ and ‘gains’. Tversky and Kahneman

(1992) also demonstrate the loss aversion and risk seeking behaviour by an asymmetric S-shaped

utility function, convex in the domain of losses and concave in the domain of gains. The martingale

method is mainly used to solve the S-shaped utility maximization problem when the market is

complete. For example, Berkelaar et al. (2004) derive the optimal investment strategies with two

utility functions under loss aversion in a continuous-time case. He and Kou (2018) investigate

the S-shaped utility maximization under a minimum guarantee. Dong and Zheng (2019) include
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both short-selling and portfolio insurance (PI) constraints in the model and apply the dual control

method to solve the corresponding constrained optimization problem.

Value-at-Risk (VaR), defined as the worst expected loss given a pre-set confidence level, is

a quantile measure that controls the tail risk of the terminal wealth. Due to its prominence in

current regulatory frameworks for banks (Basel II) as well as for insurance companies (Solvency

II), VaR plays an important role in pensions, insurance companies and other financial institutions.

A VaR measurement is easy to interpret as it is based on the examination of the percentiles of the

distribution, summarising the downside risk of an institution. Furthermore, VaR can be used to

facilitate risk aggregation for quantifying all types of risks. VaR-based risk management (VaR-RM)

has a convenient property that it nests the PI-based risk management (PI-RM). It is commonly used

by practitioners and regulators due to these advantages, although it ignores the magnitude of losses

when they do occur. The problem of concave utility (mainly CRRA utility) maximization under a

VaR constraint has been studied in the literature. For example, Basak and Shapiro (2001) derive

the optimal investment strategies to manage VaR risk by a martingale method. Boyle and Tian

(2007) generalize the VaR constraint to the case where the wealth must exceed a stochastic, but

hedgeable, benchmark with a given probability. Kraft and Steffensen (2013) impose intertemporal

VaR constraints and characterize the optimal terminal wealth by a linear combination of European

call and put options. Recently, nonconcave utility maximization without VaR constraints has been

considered by many researchers, see Bernard et al. (2015), El Karoui et al. (2005), Bichuch and

Sturm (2014), Guan and Liang (2016), Chen et al. (2017), Chen et al. (2019) and He and Kou

(2018).

The aforementioned references all assume that the market is complete, which is equivalent to the

existence of a unique pricing kernel. The martingale approach is commonly used to solve optimal

investment problems as one may first find the optimal terminal wealth by solving a simplified static

optimization problem and then find the replicating feasible trading strategy (the optimal control)

with the martingale representation theorem, see, for example, Pliska (1986), Cox and Huang (1989),

and Karatzas et al. (1986). Cvitanic and Karatzas (1992) and Xu and Shreve (1992) generalize the

martingale method to facilitate portfolio constraints. He and Zhou (2011) investigate a concave

utility maximization problem in an incomplete market model with infinitely many pricing kernels

and show that there exists a unique pricing kernel, called the minimal pricing kernel, in the presence

of closed convex cone control constraints and one may use it to solve the constrained problem in the

same way as in the complete market case. The optional decomposition theorem (see Follmer and

Kramkov (1997)) ensures the existence of a feasible replicating trading strategy. To actually find

the replicating trading strategy, one may first find the optimal wealth process by computing the

conditional expectation of the optimal terminal wealth with the minimal pricing kernel and then

derive the stochastic differential equation (SDE) for the optimal wealth process with Ito’s formula.

The key step in this procedure is to find explicitly the optimal wealth process, which is in general

difficult when the utility function is not a simple strictly concave function (see Chen et al. (2019)),

let alone any additional constraints on the terminal wealth.

In this paper, we investigate an S-shaped utility maximization problem under trading and VaR

constraints. The wealth process is not self-financing and has additional cash income. The model

is well placed for studying the optimal investment of defined contribution (DC) pension schemes

which are popular and important in the pension systems of many countries. In a DC pension plan,
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the member contributes part of the salary to the plan and bears the financial risk. The retirement

benefit is mainly determined by the performance of its fund portfolios before retirement. It is

therefore essential for pension fund managers to find optimal investment strategies for the members

during the accumulation phase to build sufficient funds on retirement. The optimal DC pension

investment has attracted extensive research, see Boulier et al. (2001), Cairns et al. (2006), Zhang

et al. (2007), Zhang and Ewald (2010), Yao et al. (2013), Zeng et al. (2018) and Blake et al. (2013,

2014). This paper sheds some new light on the optimal pension plan investment in the presence

of S-shaped utility and VaR and control constraints and covers the constrained portfolio choice

problem of self-financing wealth process as a special case with zero cash income. This paper is

also more complex in mathematics than Dong and Zheng (2019) in the sense that the latter only

involves solving the binding budget constraint equation whereas the former needs to tackle the

combination of the budget constraint and the VaR constraint simultaneously.

It is a highly nontrivial task to solve a VaR-constrained optimization problem. We circumvent

the difficulty by introducing a Lagrange multiplier to reflect the bindingness of VaR constraint,

which leads to a utility maximization problem with a non-concave discontinuous utility function. We

apply the concavification and the dual control method, together with the pathwise differentiation

and likelihood ratio method, to solve the resulting VaR constraint-free maximization problem with a

fixed Lagrange multiplier and give the explicit characterizations of the optimal portfolio and wealth

processes in terms of the optimal dual control and state processes. To find the correct Lagrange

multiplier that makes the optimal solution of the unconstrained problem the same one for the

constrained problem, we need to solve two fully coupled nonlinear equations (binding budget and

VaR constraints) with Lagrange multiplier and initial dual state value as variables, again a highly

nontrivial problem. We overcome the difficulty by finding the explicit relation of the Lagrange

multiplier and the initial dual value from the binding VaR constraint and then solve the binding

budget constraint equation to find the unique initial dual state value. This methodology may open

a way for solving S-shaped utility maximization with multiple VaR and other constraints, which

may be more effective in risk management. The key to our success is the dual control method

which is effective in solving portfolio optimization problems with control constraints as it relates

the original stochastic optimal control problem to a dual problem which may be relatively easier

to solve, see Xu and Shreve (1992) and Bian et al. (2011). Unlike He and Zhou (2011), we derive

the explicit representation of the optimal wealth process and investment strategy in terms of the

dual value function, its derivatives, and the optimal dual state process, which makes possible either

to find their closed form expressions or to compute their numerical values with the Monte Carlo

simulation method. It is virtually impossible to solve the problem in this paper directly in its

primal form. We propose a simple and effective numerical algorithm for finding the initial dual

state value, the Lagrange multiplier and the optimal terminal wealth.

Our theoretical and numerical results show that the loss aversion as well as trading and VaR

constraints have significant impact on the optimization problem. It is well known that, a VaR

constraint leads to heavier losses in bad market scenarios than in the case of no VaR constraint

under a smooth concave utility. Loss aversion leads the manager to be risk averse in the gain

domain and risk-seeking in the loss domain. We find that introducing a VaR constraint under

an S-shaped utility may not lead to more losses than in the case of no VaR constraint. On the

contrary, a VaR constraint may strictly improve the risk management for bad economic states. It is
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crucially important to choose a reasonable confidence level and protection level in a VaR constraint.

If the confidence level is too low or the protection level is too high, then more states need to be

insured against and the optimal terminal wealth becomes less volatile which results in a relatively

low expected terminal wealth. If the confidence level is too high or the protection level is too low,

then a VaR constraint would not well protect the members’ benefits.

The main contribution of this paper is that we extend the application of the dual control

method for a continuous concave utility in Bian et al. (2011) to a discontinuous nonconcave utility

(due to VaR constraint and S-shaped utility), solve the optimal investment problem with S-shaped

utility and trading and VaR constraints, prove the existence and uniqueness of the optimal solution,

characterize explicitly the optimal wealth and the Lagrange multiplier, and identify the joint impact

of the S-shaped utility and VaR and control constraints on the distribution of the optimal terminal

wealth. To the best of the authors’ knowledge, we are the first in the literature to have completely

solved the aforementioned constrained optimization problem based on the concavification and dual

control method.

The rest of the paper is organized as follows. In Section 2 we formulate a DC pension invest-

ment problem with S-shaped utility and trading and VaR constraints, and convert the constrained

optimization problem (2.7) into an equivalent unconstrained one (2.8) coupled with the feasibility

and complementary slackness condition (2.9). In Section 3 we apply the concavification and dual

control method to solve the unconstrained nonconcave discontinuous optimization problem (2.8)

and characterize explicitly the optimal solution and optimal control in Propositions 3.1-3.3 and

Theorem 3.7. In Section 4 we state the main result of the paper, Theorem 4.1, on the existence

and uniqueness of the optimal solution for the constrained optimization problem (2.7) and give a

constructive proof which leads to a simple and effective algorithm to compute the initial dual state

variable and Lagrange multiplier. In Section 5 we present a numerical example with short-selling

constraints and discuss the impact of VaR constraint on the distribution of the optimal terminal

wealth. Section 6 concludes. The appendix contains a technical lemma that is used in constructing

the concave envelope of a nonconcave discontinuous function, the proofs of Propositions 3.1-3.3 and

explicit expressions for the optimal wealth and portfolio processes.

2 The investment problem for a DC pension fund

Let (Ω,F ,F, P ) be a filtered complete probability space with the filtration F := {Ft|0 ≤ t ≤ T}
being the natural filtration generated by an n-dimensional standard Brownian motion W (t) =

(W1(t), · · · ,Wn(t))>, where W1(t), · · · , Wn(t) are independent and a> is the transpose of a, and

satisfying the usual conditions. The pension fund starts at time 0 and the retirement time is T .

Let the financial market consist of n + 1 traded securities: one riskless savings account S0(t)

and n risky assets Si(t), i = 1, · · · , n. The riskless savings account evolves as

dS0(t) = rS0(t)dt, (2.1)

where r is a riskless interest rate. The price processes of the n risky assets are modelled by

dS(t) = diag(S(t))(µdt+ σdW (t)), (2.2)

where S(t) = (S1(t), · · · , Sn(t))>, diag(S(t)) is an n × n matrix with diagonal elements Si(t) and

all other elements 0, µ = (µ1, · · · , µn)> is a constant vector representing the stock growth rate
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with µi > r, i = 1, · · · , n, and σ = (σij) is an n × n nonsingular constant matrix representing the

volatility and correlation information of S(t).

In recent years, DC pension plans have become increasingly popular in the pension market due to

the prevailing trend of longer lifespans and the development of the equity markets. In a DC pension

plan, its members contribute proportions of their salaries to the pension plan before retirement time

T . Let c(t) > 0 denote the aggregated amount of money contributed at time t of a cohort of fund

participants. Note that individual members’ contribution rates may be random and fluctuate over

the time, but for a large pension fund, the accumulated cash income is in general deterministic and

stable. Furthermore, in the labor market, the average salary of employees and the contribution rate

often steadily increase in the long run. We therefore assume c(t) is a deterministic, nondecreasing

function. Assume that there are no transaction costs or taxes in the financial market. The pension

account is endowed with an initial endowment x0 ≥ 0. The wealth process Xπ(t) satisfies the

following controlled SDE:

dXπ(t) = (rXπ(t) + π>(t)σξ)dt+ π>(t)σdW (t) + c(t)dt, t ≥ 0, (2.3)

with initial condition Xπ(0) = x0, where π(t) = (π1(t), · · · , πn(t))> and πi(t) is the amount of

wealth invested in the ith risky asset for i = 1, · · · , n, ξ = σ−1(µ − r1) is the market price of

risk vector and 1 is a vector with all components 1. We next define the set of admissible trading

strategies.

Definition 2.1. Let K be a closed convex cone. A portfolio strategy π = (π1, · · · , πn)> is said to be

admissible if it is a progressively measurable, F-adapted process which satisfies E[
∫ T
0 ‖π(t)‖2dt] <

∞, π(t) ∈ K, a.s., and there exists a unique strong solution Xπ(t) to (2.3). The set of all admissible

portfolio strategies is denoted by A.

Most literature on DC pension plan focus on maximizing the expectation of a smooth concave

utility of terminal wealth. Kahneman and Tversky (1979) claim that people tend to be risk averse

to gains and risk seeking to losses and make decisions relative to some reference levels rather than

absolute values directly. Based on experiments, Kahneman and Tversky (1979) propose an S-

shaped utility function (see (5.1)) to characterize different behaviors of people over gains and losses

relative to a reference point. There has been some research on DC pension plan with S-shaped

utilities, see Guan and Liang (2016) and Chen et al. (2017). Here we extend the underlying power

utilities in the S-shaped utility to a more general convex-concave utility. Since the purpose of a

pension plan is to provide adequate income for its members after retirement, the primary goal of

a DC pension fund manager is to find the optimal investment strategies under loss aversion and

trading and VaR constraints.

Let θ be a reference point, which is chosen in advance. Consider a utility function defined by:

U(x) =


−∞, x < 0,

−U2(θ − x), 0 ≤ x < θ,

U1(x− θ), x ≥ θ,
(2.4)

where U1 and U2 are two strictly increasing, strictly concave, continuously differentiable, real-valued

functions defined on [0,∞) satisfying

lim
x→+∞

U1(x) = +∞, lim
x→+∞

U ′1(x) = 0, Ui(0) = 0, lim
x→0+

U ′i(x) = +∞, (2.5)
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for i = 1, 2 and U1 satisfies the asymptotic elasticity condition

lim
x→+∞

xU ′1(x)

U1(x)
< 1. (2.6)

Note that U is convex when x is less than θ (in the domain of losses) and concave when x is greater

than θ (in the domain of gains) which gives an S-shaped graph.

Condition (2.5) ensures that the strictly decreasing function U ′1 has a strictly decreasing inverse

I1 : (0,∞)→ (0,∞), that is,

U ′1(I1(y)) = y,∀y > 0, I1(U
′
1(x)) = x, ∀x > 0.

Let L > 0 be a given level. In order to provide a downside protection, the pension manager is

to find the optimal investment strategy to maximize the expected utility of the wealth at time T

under a VaR constraint: 
max
π∈A

E[U(Xπ(T ))],

s.t. Xπ(t) satisfies (2.3),

P (Xπ(T ) ≥ L) ≥ 1− ε,
(2.7)

where 0 ≤ ε ≤ 1 is a given constant. The VaR constraint requires that the probability of the

terminal wealth above the level L is at least 1 − ε. When ε = 1, the constraint is not binding.

When ε = 0, (2.7) recovers the case of portfolio insurance, see Basak (1995).

Remark 2.2. People often make decisions relative to some reference levels. Thus, the choice of

the reference point θ is crucial. If θ is set too low, then it may lead to little utility after retirement.

To protect the members’ benefits, we can set the protection level L higher than θ. If θ is set too

high, then the manager is likely to take a great risk to try to attain the reference point due to his

risk-seeking behavior in the loss domain. To prevent too much risk of DC pension plan, we can set

the protection level L lower than θ.

We may use the Lagrange multiplier method to solve problem (2.7). Define

Ũλ(x) = U(x) + λ1{x≥L},

where λ ≥ 0 is a Lagrange multiplier to be determined. Note that Ũλ is a nonconcave discontinuous

function which jumps upwards by the amount λ at the point x = L and then continues in parallel

to U afterwards.

Consider the following VaR constraint-free version of problem (2.7):{
max
π∈A

E[Ũλ(Xπ(T ))],

s.t. Xπ(t) satisfies (2.3).
(2.8)

If we can find the optimal solution Xπ∗,λ
∗
(T ) of problem (2.8) for some admissible control π∗ and

nonnegative constant λ∗ such that{
P (Xπ∗,λ

∗
(T ) ≥ L) ≥ 1− ε,

λ∗
(
P (Xπ∗,λ

∗
(T ) ≥ L)− 1 + ε

)
= 0,

(2.9)

then Xπ∗,λ
∗
(T ) is the optimal solution of problem (2.7), π∗ is the optimal control and λ∗ is the

Lagrange multiplier. This is verified in the next result.
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Lemma 2.3. Assume that there exists a nonnegative constant λ∗ such that Xπ∗,λ
∗
(T ) solves problem

(2.8) and satisfies condition (2.9). Then, Xπ∗,λ
∗
(T ) solves problem (2.7).

Proof. Assume that Xπ∗,λ
∗
(T ) is the optimal solution to problem (2.8) with condition (2.9). As

Xπ∗,λ
∗
(T ) is feasible for problem (2.7), we have

E[U(Xπ∗,λ
∗
(T ))] ≤ max

π∈A
E[U(Xπ(T ))],

where Xπ(T ) is an arbitrary feasible solution for problem (2.7). On the other hand, since Xπ∗,λ
∗
(T )

solves (2.8), we have

E[Ũλ∗(X
π(T ))] ≤ E[Ũλ∗(X

π∗,λ
∗
(T ))],

that is,

E[U(Xπ(T ))] + λ∗P (Xπ(T ) ≥ L) ≤ E[U(Xπ∗,λ
∗
(T ))] + λ∗P (Xπ∗,λ

∗
(T ) ≥ L).

Since Xπ∗,λ
∗
(T ) satisfies condition (2.9) and Xπ(T ) satisfies the VaR constraint, we have

E[U(Xπ(T ))] ≤ E[U(Xπ∗,λ
∗
(T ))] + λ∗

(
1− ε− P (Xπ(T ) ≥ L)

)
≤ E[U(Xπ∗,λ

∗
(T ))],

which implies

max
π∈A

E[U(Xπ(T ))] ≤ E[U(Xπ∗,λ
∗
(T ))].

Therefore, Xπ∗,λ
∗
(T ) solves problem (2.7).

When the financial market is incomplete, explicit solutions for portfolio choice problems are in

general unavailable since there are many pricing kernels. However, if the incompleteness is due to

closed convex cone control constraints, one can use the dual control method to find a particular

one among all pricing kernels, which is the so-called minimum pricing kernel (see He and Zhou

(2011)), and then solve the problem in the same way as in the complete market case with the help

of this particular pricing kernel and the optional decomposition theorem (see Follmer and Kramkov

(1997)). For continuous concave utility functions, Bian et al. (2011) use the dual control method

to solve the utility maximization problem in the presence of closed convex cone control constraints.

Since Ũλ is a discontinuous nonconcave utility function, we cannot directly apply the results in

Bian et al. (2011) to solve problem (2.8). However, thanks to the concavification technique (see

Carpenter (2000)), we can work on the concave envelope of Ũλ and apply the results in Bian et

al. (2011) to solve problem (2.8), which is discussed in detail in the next section.

3 Solving unconstrained optimization problem (2.8)

For a fixed λ ≥ 0, the dual function of Ũλ is defined by:

Vλ(y) = sup
x≥0
{Ũλ(x)− xy}, y > 0. (3.1)
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Denote by f c the concave envelope of a function f with domain D, that is, f c is the smallest

concave function that is greater than or equal to f , defined by

f c(x) := inf{g(x) : D → R| g is a concave function, g(t) ≥ f(t), ∀t ∈ D}, ∀x ∈ D.

Since U is not concave, we first derive the concave envelope of U . To simplify the formulation,

we introduce the notation

cx := U ′1(x− θ), x > θ.

Note that cx is a decreasing function of x > θ and is the slope of the tangent line to the curve

U1(x− θ) at point x > θ.

0 z

0

Figure 1: Concave envelope of U(x), U c(x)

Let z be the tangent point of the straight line starting at (0,−U2(θ)) to the curve U1(x−θ), x ≥ θ.
Simple calculus, using (2.5) and (2.6), shows that there exists a unique solution z > θ to the equation

U1(x− θ) + U2(θ)− xU ′1(x− θ) = 0. (3.2)

The concave envelope of U is given by (see Figure 1)

U c(x) =


−∞, x < 0,

czx− U2(θ), 0 ≤ x < z,

U1(x− θ), x ≥ z,
(3.3)

where z is the solution to (3.2), see Carpenter (2000).

Consider the concavified version of problem (3.1):

V c
λ (y) = sup

x≥0
{Ũ cλ(x)− xy}, y > 0. (3.4)

From Lemma 2.9 of Reichlin (2013), we have, for y > 0,

Vλ(y) = V c
λ (y) = Ũ cλ(x∗,λ(y))− x∗,λ(y)y = Ũλ(x∗,λ(y))− x∗,λ(y)y, (3.5)

where x∗,λ(y) solves both (3.1) and (3.4). For λ ≥ 0 and L ≥ θ, denote by

kλ =
U(L) + λ+ U2(θ)

L
. (3.6)
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Note that kλ is the slope of the straight line linking points (0,−U2(θ)) and (L,U(L) + λ) and

kλ depends on λ as well as parameters L, θ and utility functions U1, U2. The next three results

characterize Ũ cλ and x∗,λ(y) for three cases: L ≥ z, θ ≤ L < z and L < θ.

Proposition 3.1. Let L ≥ z with z determined by (3.2) and kλ be defined by (3.6). Then we have

kλ ≥ k0 ≥ cL and cz ≥ k0 ≥ cL. For y > 0,

Case I: If kλ > cz, then

Ũ cλ(x) =


−∞, x < 0,

kλx− U2(θ), 0 ≤ x < L,

U1(x− θ) + λ, x ≥ L,
(3.7)

and

x∗,λ(y) =


θ + I1(y), y < cL,

L, cL ≤ y < kλ,

0, y ≥ kλ.
(3.8)

Case II: If cL ≤ kλ ≤ cz, then

Ũ cλ(x) =



−∞, x < 0,

czx− U2(θ), 0 ≤ x < z,

U1(x− θ), z ≤ x < L0,

cL0(x− L) + U1(L− θ) + λ, L0 ≤ x < L,

U1(x− θ) + λ, x ≥ L,

(3.9)

and

x∗,λ(y) =


θ + I1(y), y < cL,

L, cL ≤ y < cL0 ,

θ + I1(y), cL0 ≤ y < cz,

0, y ≥ cz,

(3.10)

where L0 is the unique solution in the interval [z, L] of the equation

U1(x− θ)− U1(L− θ)− λ− (x− L)U ′1(x− θ) = 0. (3.11)

In particular, if λ = 0, then L0 = L, Ũ cλ(x) is the same as U c(x) given by (3.3) and

x∗,0(y) =

{
θ + I1(y), y < cz,

0, y ≥ cz.
(3.12)

Proof. See Appendix.

It is clear that x∗,0(y) in (3.12) is bounded above by x∗,λ(y) in (3.10) that is bounded above by

x∗,λ(y) in (3.8). For kλ > cz, the concave envelope Ũ cλ is linear in [0, L) and coincides with Ũλ in

(−∞, 0) ∪ [L,∞). We will later see that the utility changing point L plays an essential role in the

optimal terminal wealth in this case. For kλ ≤ cz, the concave envelope Ũ cλ is linear in [0, z) and

[L0, L), respectively, and coincides with Ũλ in (−∞, 0) ∪ (z, L0) ∪ [L,∞). In this case, the optimal

terminal wealth is determined by the utility changing points z, L0 and L.
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Proposition 3.2. Let θ ≤ L < z with z determined by (3.2) and kλ be defined by (3.6). Then we

have k0 < cL. For y > 0,

Case I: If kλ ≥ cL, then Ũ cλ(x) and x∗,λ(y) are given by (3.7) and (3.8), respectively.

Case II: If kλ < cL, then

Ũ cλ(x) =


−∞, x < 0,

cz0x− U2(θ), 0 ≤ x < z0,

U1(x− θ) + λ, x ≥ z0,
(3.13)

and

x∗,λ(y) =

{
θ + I1(y), y < cz0 ,

0, y ≥ cz0 ,
(3.14)

where z0 is the unique solution in the interval (L, z] of the equation

U1(x− θ) + U2(θ) + λ− xU ′1(x− θ) = 0. (3.15)

In particular, if λ = 0, then z0 = z, Ũ cλ(x) and x∗,0(y) are given by (3.3) and (3.12), respectively.

Proof. See Appendix.

We now turn to the case L < θ. Let z̃ be the tangent point of the straight line starting at

(L,−U2(θ − L)) to the curve U1(x − θ), x ≥ θ. Simple calculus shows that there exists a unique

solution θ < z̃ < z to the equation

U1(x− θ) + U2(θ − L)− (x− L)U ′1(x− θ) = 0. (3.16)

Proposition 3.3. Let L < θ < z̃ < z with z̃, z determined by (3.16) and (3.2) and kλ be defined

by (3.6). Then we have k0 < cz < cz̃. For y > 0,

Case I: If kλ > cz̃, then

Ũ cλ(x) =


−∞, x < 0,

kλx− U2(θ), 0 ≤ x < L,

cz̃(x− L)− U2(θ) + λ, L ≤ x < z̃,

U1(x− θ) + λ, x ≥ z̃,

(3.17)

and

x∗,λ(y) =


θ + I1(y), y < cz̃,

L, cz̃ ≤ y < kλ,

0, y ≥ kλ.
(3.18)

Case II: If kλ ≤ cz̃, then Ũ cλ(x) and x∗,λ(y) are given by (3.13) and (3.14) with z0 replaced by z̃0,

where z̃0 is the unique solution in the interval [z̃, z] of the equation (3.15).

In particular, if λ = 0, then z̃0 = z, Ũ cλ(x) and x∗,0(y) are given by (3.3) and (3.12), respectively.

Proof. See Appendix.
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For θ ≤ L < z and L < θ, the concave envelope is also linear on the intervals where the

concavification is needed and coincides with the curves of Ũλ in other regions. We will later see

that the optimal terminal wealth for θ ≤ L < z and L < θ is still determined by the utility changing

points.

The wealth process Xπ given by (2.3) is not self-financing due to the contribution term in a

DC pension plan. Therefore, the problem (2.8) is not a classical utility maximization problem

with control constraints. To apply the existing results on the optimization problem with control

constraints, we introduce an auxiliary process as follows:

X̃π(t) = Xπ(t) + C(t), (3.19)

where

C(t) =

∫ T

t
c(s)e−r(s−t)ds (3.20)

is the discounted value at time t of total pension contribution from t to T. Using (2.3), we have

dX̃π(t) = (rX̃π(t) + π>(t)σξ)dt+ π>(t)σdW (t), X̃π(0) = x̃0 ≥ 0, (3.21)

with x̃0 = x0 + C(0) = x0 +
∫ T
0 c(s)e−rsds. The total wealth of the pension account X̃π(t) (the

current wealth Xπ(t) plus the present value of future contributions C(t)) satisfies

X̃π(T ) = Xπ(T ), X̃π(t) ≥ 0, for all t ∈ [0, T ].

Zhang and Ewald (2010) state that in the presence of a positive endowment stream, the current

wealth Xπ(t) is allowed to be negative, provided the present value of future contributions is large

enough to offset such a negative value. In this setup, the manager makes his investment decisions

based on not only the current wealth, but also the present value of the future cash income. In theory

x0 can be negative as long as x̃0 is nonnegative, however, the pension account is always endowed

with a positive initial fund x0. The optimization problem (2.8) is equivalent to the following

problem: {
max
π∈A

E[Ũλ(X̃π(T ))],

s.t. X̃π(t) satisfies (3.21).
(3.22)

Define the value functions of the primal problem and its concavified version by

uλ(t, x̃) = max
π∈A

E[Ũλ(X̃π(T ))|X̃π(t) = x̃], (3.23)

and

ucλ(t, x̃) = max
π∈A

E[Ũ cλ(X̃π(T ))|X̃π(t) = x̃]. (3.24)

Reichlin (2013) investigates the relationship between ucλ(t, x̃) and uλ(t, x̃) and gives the following

result.

Theorem 3.4. (Reichlin (2013), Theorem 5.1) Assume that uλ(t, x̃) and ucλ(t, x̃) are given by

(3.23) and (3.24). Then it holds that uλ(t, x̃) = ucλ(t, x̃).
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Theorem 3.4 states that the terminal wealth that is optimal for the concavified objective function

is also optimal for the original objective function since it never takes on values where the two utility

functions disagree. We next use the dual control method to solve the optimization problems uλ(t, x̃)

and ucλ(t, x̃). First, we define the dual control set.

Definition 3.5. Let K̃ be the positive polar cone of K, i.e., K̃ = {p : p>v ≥ 0 for all v ∈ K}.
A dual control process is a progressively measurable, F-adapted process ν = (ν1, · · · , νn)> which

satisfies E[
∫ T
0 ‖ν(t)‖2dt] < ∞ and ν(t) ∈ K̃ a.s. for all t. We denote the set of all dual control

processes by A0.

For ν ∈ A0, define the dual process

dY ν(t) = Y ν(t)(−rdt− (σ−1ν(t) + ξ)>dW (t)), Y ν(0) = y0.

Consider the dual minimization problem

min
ν∈A0

E[V c
λ (Y ν(T ))].

The dual value function is defined by

vλ(t, y) = min
v∈A0

E[V c
λ (Y ν(T ))|Y ν(t) = y].

The dual HJB equation is given by
∂vλ
∂t (t, y)− ry ∂vλ∂y (t, y) + 1

2y
2 min
ν∈K̃
‖ξ + σ−1ν‖2 ∂

2vλ
∂y2

(t, y) = 0, y > 0, t < T,

vλ(T, y) = Vλ(y).
(3.25)

Here we have used Vλ(y) = V c
λ (y) for y > 0. There exists a unique minimizer ν̂ ∈ K̃ for convex

quadratic function

f(ν) = ‖ξ + σ−1ν‖2 (3.26)

over ν ∈ K̃, see Xu and Shreve (1992). Denote by

ξ̂ = ξ + σ−1ν̂. (3.27)

Under the condition ξ̂ 6= 0, the solution to (3.25) is given by

vλ(t, y) = E[Vλ(Y ν̂(T ))|Y ν̂(t) = y], (3.28)

where Y ν̂(s) = yH
ν̂(s)

H ν̂(t)
for t ≤ s ≤ T and

H ν̂(t) = exp

(
−
(
r +
‖ξ̂‖2

2

)
t− ξ̂>W (t)

)
(3.29)

is the state-price density process in a fictitious market (see Cox and Huang (1989)) and the minimal

pricing kernel (see He and Zhou (2011)). If there is no limitation on the trading strategy, then

ν̂ = 0 and H ν̂(t) is exactly the pricing kernel in the Black-Scholes complete market.
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Remark 3.6. If the portfolio shares are restricted to lie in a closed convex set K with 0 ∈ K, then

similar to Bian et al. (2011), we can define the dual process Y ν(t) satisfying the SDE

dY ν(t) = Y ν(t)(−
(
r + δK(ν)

)
dt− (σ−1ν + ξ)>dW (t)), Y ν(0) = y0,

where

δK(z)
.
= sup

π∈K
{−π>z}

is the support function of the set −K. Then the dual HJB equation is given by{
∂vλ
∂t (t, y) + min

ν

{
− (r + δK(ν))y ∂vλ∂y (t, y) + 1

2y
2‖ξ + σ−1ν‖2 ∂

2vλ
∂y2

(t, y)
}

= 0, y > 0, t < T,

vλ(T, y) = Vλ(y).
(3.30)

In the case of λ = 0 (no VaR constraint) and U is a power or log utility, we can find a closed

form solution of (3.30) by the homothetic property of U for any closed convex set K. For general

utility with VaR constraint, it is highly difficult to solve (3.30) for general closed convex set K

as (3.30) is a fully nonlinear PDE. However, if K is a closed convex cone, then δK(z) = 0 if

z ∈ K̃ and ∞ otherwise. Thus, equation (3.30) becomes (3.25) which allows an explicit solution.

Equation (3.25) is consistent with (15.5) in Cvitanic and Karatzas (1992) for a strictly concave

and continuously differentiable utility. To explicitly solve the optimization problem with an S-shaped

utility and trading constraints, we only consider in this paper the case that K is a closed convex

cone. We show the relation between the S-shaped utility maximization and the dual problem by

using the concavification technique and apply the results in Bian et al. (2011) to solve the problem

(2.8) for fixed Lagrange multiplier λ.

Bian et al. (2011) and Xu and Shreve (1992) give the relationship between the optimization

problem ucλ(t, x̃) and the dual optimization problem. Combining with Theorem 3.4, we have the

following result.

Theorem 3.7. (Bian et al. (2011)) Assume that ξ̂ 6= 0, vλ(t, y) is given by (3.28) and conditions

(2.5) and (2.6) hold, then we have, for 0 ≤ t < T,

uλ(t, x̃) = vλ(t, y(t, x̃)) + x̃y(t, x̃), x̃ ≥ 0,

where y = y(t, x̃) satisfies the equation

∂vλ
∂y

(t, y) + x̃ = 0. (3.31)

The optimal feedback control is given by

π∗,λ(t, x̃) = (σ>)−1ξ̂y(t, x̃)
∂2vλ
∂y2

(t, y(t, x̃)), (3.32)

and π∗,λ(t, x̃) ∈ K. Furthermore, starting with the initial wealth x̃0 at time 0, the optimal wealth

process is given by

X̃π∗,λ(t) = −∂vλ
∂y

(t, y0H
ν̂(t)), (3.33)

where y0 is the solution to the equation

∂vλ
∂y

(0, y0) + x̃0 = 0. (3.34)
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Note that Vλ(y) is continuous for y > 0 and continuously differentiable for y > 0 except at

finitely many points. Using (3.5) and pathwise differentiation, we have

X̃π∗,λ(t) = −∂vλ
∂y

(t, y) = E

[
x∗,λ(Y ν̂(T ))

Y ν̂(T )

y

∣∣∣Y ν̂(t) = y

]
, (3.35)

where x∗,λ(y) is defined in (3.8), (3.10) for L ≥ z, (3.8), (3.14) for θ ≤ L < z, and (3.18), (3.14) for

L < θ, respectively. Equation (3.35) implies that once the unique pricing kernel H ν̂(t) is found, we

can solve the unconstrained optimization problem (2.8) in the same way as in the complete market,

which involves solving a terminal static optimization problem first to obtain the optimal terminal

wealth and then deriving the optimal wealth process by computing the conditional expectation of

the optimal terminal wealth under the pricing kernel H ν̂(t).

As x∗,λ(y) is not continuous everywhere for y > 0, we cannot use the pathwise differentiation,

but we may apply the likelihood ratio method (see Broadie and Glasserman (1996)) to obtain

∂2vλ
∂y2

(t, y) = −E

x∗,λ(Y ν̂(T )
)Y ν̂(T )

(
ln(Y

ν̂(T )
y ) + β(t)

)
α(t)y2

∣∣∣Y ν̂(t) = y

 , (3.36)

where

α(t) = ‖ξ̂‖2(T − t), β(t) =
(
r − ‖ξ̂‖

2

2

)
(T − t). (3.37)

Since Y ν̂(T ) is a lognormal variable, some lengthy but straightforward calculations will lead to

closed-form expressions for π∗,λ(t, x̃), X̃π∗,λ(t) in (3.32) and (3.33). Once X̃π∗,λ(t) is derived, the

optimal wealth process Xπ∗,λ(t) can be easily obtained from (3.19).

4 Solving constrained optimization problem (2.7)

In the previous section, we have applied the dual control method to solve the unconstrained opti-

mization problem (2.8) for every fixed λ ≥ 0. We now show there exists a λ∗ ≥ 0 such that condition

(2.9) holds. Applying Theorem 3.7, we can easily find the optimal wealth process Xπ∗,λ
∗
(t) and

the optimal investment strategy π∗,λ
∗
(t) for 0 ≤ t ≤ T, which are presented in Proposition A.1 in

the appendix. We next state the main result of the paper.

Theorem 4.1. Assume ν̂ ∈ K̃ is the unique minimizer of (3.26), ξ̂ 6= 0, and

x0 + C(0) > E[LH ν̂(T )1{H ν̂(T )<H∗}],

where H∗ solves

P (H ν̂(T ) > H∗) = ε, (4.1)

for a given 0 ≤ ε ≤ 1. Then there exists a unique λ∗ ≥ 0 such that Xπ∗,λ
∗
(T ) is the optimal solution

of unconstrained problem (2.8) and satisfies condition (2.9). Therefore, Xπ∗,λ
∗
(T ) is the optimal

solution of VaR constrained problem (2.7) and λ∗ is the corresponding Lagrange multiplier.
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Proof. We first consider the case L ≥ z, where z is the solution to (3.2). For a fixed λ ≥ 0, we can

obtain from equation (3.35) that the optimal terminal wealth is given by

Xπ∗,λ(T ) = X̃π∗,λ(T ) = x∗,λ(y0H
ν̂(T )), (4.2)

where x∗,λ(y) is defined in (3.8), (3.10) and (3.12), and y0 is determined by the binding budget

constraint

E[Xπ∗,λ(T )H ν̂(T )] = x0 + C(0), (4.3)

If we can find a unique solution (y0, λ
∗) to equations (2.9) and (4.3), then Xπ∗,λ

∗
(T ) is the solution

to the problem (2.7). To solve equations (2.9) and (4.3), let H∗ be defined by (4.1). We now

choose λ and check the bindingness of the VaR constraint by comparing the solution to the optimal

terminal wealth without VaR constraint with the threshold of the VaR constraint H∗. If λ = 0,

then we have x∗,λ(y) in (4.2) is defined by (3.12) and the optimal terminal wealth without VaR

constraint, denoted by Xπ∗(T ), is given by

Xπ∗(T ) = (θ + I1(y0H
ν̂(T )))1{H ν̂(T )< cz

y0
}, (4.4)

where y0 is determined by (4.3) with Xπ∗,λ(T ) replaced by Xπ∗(T ). Note that for any ω ∈ Ω, y0 →
Xπ∗(T ) is a decreasing function of y0 since I1 is strictly decreasing. Then V (y0) = E

[
H ν̂(T )Xπ∗(T )

]
is continuous and strictly decreasing in y0. Furthermore, for any ω ∈ Ω, we have lim

y0→0+
Xπ∗(T ) =∞

and lim
y0→∞

Xπ∗(T ) = 0, which yields

lim
y0→0+

V (y0) =∞, lim
y0→∞

V (y0) = 0 < x0 + C(0).

Thus, there exists a unique solution y0 to equation (4.3).

If H∗ ≤ cL
y0
, then

P (Xπ∗(T ) ≥ L) = P (H ν̂(T ) ≤ cL
y0

) ≥ P (H ν̂(T ) ≤ H∗) = 1− ε.

We can choose λ∗ = 0 as Xπ∗(T ) naturally satisfies the VaR constraint and maximizes problem

(2.7).

If H∗ > cL
y0
, then the VaR constraint is binding and it should hold that λ > 0, which implies

that Xπ∗,λ(T ) satisfies

P (Xπ∗,λ(T ) ≥ L) = 1− ε. (4.5)

Then we can choose λ as a function of y0 by using (4.1) and (2.9).

(i) If cL
y0
< H∗ ≤ cz

y0
, then Xπ∗,λ(T ) = x∗,λ(y0H

ν̂(T )) takes a four-region form, where x∗,λ(y) is

defined in (3.10), that is,

Xπ∗,λ(T ) = (θ + I1(y0H
ν̂(T )))

(
1{H ν̂(T )<

cL
y0
} + 1{H∗≤H ν̂(T )< cz

y0
}

)
+ L1{ cL

y0
≤H ν̂(T )<H∗}. (4.6)

Define L0 by the relation H∗ =
cL0
y0
, which is to ensure (4.5) holds. Since cL < cL0 ≤ cz, we have

z ≤ L0 < L. Define

λ = U(L0)− U(L)− U ′(L0)(L0 − L)=̂g1(y0).
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Since d
dx(U(x) − U(L) − U ′(x)(x − L)) = −U ′′(x)(x − L) < 0 for θ < x < L, we conclude that

λ > U(L)− U(L)− U ′(L)(L− L) = 0.

(ii) If H∗ > cz
y0
, then Xπ∗,λ(T ) = x∗,λ(y0H

ν̂(T )) takes a three-region form, where x∗,λ(y) is

defined in (3.8), that is,

Xπ∗,λ(T ) = (θ + I1(y0H
ν̂(T )))1{H ν̂(T )<

cL
y0
} + L1{ cL

y0
≤H ν̂(T )<H∗}. (4.7)

Define kλ by the relation H∗ = kλ
y0
, which is again to ensure (4.5) holds. We have kλ > cz. Define

λ = kλL− U(L)− U2(θ)=̂g2(y0).

It is easy to check λ = L(kλ − U1(L−θ)+U2(θ)
L ) ≥ L(kλ − cz) > 0.

Therefore, the multiplier λ can be chosen as a function of y0:

λ = g1(y0)1{ cL
y0
<H∗≤ cz

y0
} + g2(y0)1{H∗> cz

y0
}=̂g(y0).

It remains to show that there is a unique root y0 to (4.3). Note that V1(y0) = E[H ν̂(T )Xπ∗,λ(T )] is

continuous and strictly decreasing in y0. Furthermore, for any ω ∈ Ω, we have lim
y0→0+

Xπ∗,λ(T ) =∞

and lim
y0→∞

Xπ∗,λ(T ) = L1{H ν̂(T )<H∗}, which yields

lim
y0→0+

V1(y0) =∞, lim
y0→∞

V1(y0) = E[H ν̂(T )L1{H ν̂(T )<H∗}] < x0 + C(0).

Thus, there exists a unique solution y0 to equation (4.3). We conclude that Xπ∗,λ
∗
(T ) solves

problem (2.7), λ∗ = g(y0) is the Lagrange multiplier and y0 is the unique solution of equation (4.3).

We next consider the case θ ≤ L < z. The proof is similar. For a fixed λ ≥ 0, the optimal

terminal wealth is Xπ∗,λ(T ) = x∗,λ(y0H
ν̂(T )), where x∗,λ(y) is defined in (3.8), (3.14), (3.12) and

y0 is determined by (4.3). It remains to find the unique solution (y0, λ
∗) to equations (2.9) and

(4.3). If H∗ ≤ cz
y0
, then Xπ∗(T ) naturally achieves the VaR constraint and the multiplier λ∗ is 0.

If H∗ > cz
y0
, the VaR constraint is binding and we choose λ as a function of y0.

(i) If cz
y0
< H∗ ≤ cL

y0
, then Xπ∗,λ(T ) = x∗,λ(y0H

ν̂(T )) takes a two-region form, where x∗,λ(y) is

defined in (3.14), that is,

Xπ∗,λ(T ) = (θ + I1(y0H
ν̂(T )))1{H ν̂(T )<H∗}. (4.8)

Define z0 by the relation H∗ =
cz0
y0
, which is to ensure (4.5) holds. Since cz < cz0 < cL, we have

L < z0 < z. Define

λ = z0U
′(z0)− U2(θ)− U(z0)=̂ĝ1(y0).

Since d
dx(xU ′(x)− U(x)) = U ′′(x)x < 0 for x > θ, we have that λ > zU ′(z)− U2(θ)− U(z) = 0.

(ii) If H∗ > cL
y0
, then Xπ∗,λ(T ) is the same as (4.7) and λ = g2(y0).

Similarly, we can prove that equation (4.3) has a unique root with Xπ∗,λ(T ) given by (4.4),

(4.7), (4.8) and

λ=̂ĝ(y0) := ĝ1(y0)1{ cz
y0
<H∗≤ cL

y0
} + g2(y0)1{H∗> cL

y0
}.

Therefore, when the VaR constraint is binding, Xπ∗,λ(T ) solves problem (2.7), λ∗ = ĝ(y0) is the

Lagrange multiplier and y0 is the unique solution of equation (4.3).
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Finally, we consider the case L < θ. For a fixed λ ≥ 0, the optimal terminal wealth is Xπ∗,λ(T ) =

x∗,λ(y0H
ν̂(T )), where x∗,λ(y) is defined in (3.8), (3.14), (3.18) and y0 is determined by (4.3). It

remains to find the unique solution (y0, λ
∗) to equations (2.9) and (4.3). If H∗ ≤ cz

y0
, then Xπ∗(T )

naturally achieves the VaR constraint and the multiplier λ∗ is 0. If H∗ > cz
y0
, the VaR constraint is

binding and we choose λ as a function of y0.

(i) If cz
y0
< H∗ ≤ cz̃

y0
, then Xπ∗,λ(T ) is given by (4.8). Define z̃0 by the relation H∗ =

cz̃0
y0
, which

is to ensure (4.5) holds. Since cz < cz̃0 ≤ cz̃, we have z̃ ≤ z̃0 < z. Define

λ = z̃0U
′(z̃0)− U2(θ)− U(z̃0)=̂g̃1(y0).

Since d
dx(xU ′(x)− U(x)) = U ′′(x)x < 0 for x > θ, we have that λ > zU ′(z)− U2(θ)− U(z) = 0.

(ii) If H∗ > cz̃
y0
, then Xπ∗,λ(T ) = x∗,λ(y0H

ν̂(T )) takes a three-region form, where x∗,λ(y) is

defined in (3.18), that is,

Xπ∗,λ(T ) = (θ + I1(y0H
ν̂(T )))1{H ν̂(T )<

cz̃
y0
} + L1{ cz̃

y0
≤H ν̂(T )<H∗}. (4.9)

Define λ=̂g2(y0) = kλL − U(L) − U2(θ) = kλL + U2(L − θ) − U2(θ). It is easy to check λ =

L(kλ − U2(θ)−U2(L−θ)
L ) ≥ L(kλ − cz̃) > 0. Similarly, we can prove that equation (4.3) has a unique

root with Xπ∗,λ
∗
(T ) given by (4.4),(4.8), (4.9) and

λ=̂g̃(y0) := g̃1(y0)1{ cz
y0
<H∗≤ cz̃

y0
} + g2(y0)1{H∗> cz̃

y0
}.

Therefore, when the VaR constraint is binding, Xπ∗,λ
∗
(T ) solves problem (2.7), λ∗ = g̃(y0) is the

Lagrange multiplier and y0 is the unique solution of equation (4.3).

Remark 4.2. Similar to Basak and Shapiro (2001), from (4.4), (4.6), (4.7) and (4.8), it is easy

to see that if x0 + C(0) < E[LH ν̂(T )1{H ν̂(T )<H∗}], then the optimization problem (2.7) is infeasi-

ble. For x0 + C(0) = E[LH ν̂(T )1{H ν̂(T )<H∗}], there is only one admissible solution Xπ∗,λ
∗
(T ) =

L1{H ν̂(T )<H∗}. In particular, if ε = 0, then H∗ = ∞ and Xπ∗,λ
∗
(T ) = L = erT (x0 + C(0)), which

implies that one should only invest in the riskless savings account. The assumption x0 + C(0) >

E[LH ν̂(T )1{H ν̂(T )<H∗}] ensures there is a set of nontrivial admissible solutions.

The constrained and unconstrained optimal terminal wealth Xπ∗,λ
∗
(T ) can be expressed as a

function of the state price density at maturity H ν̂(T ) and the initial dual state value y0, which is

determined via the budget constraint. For the unconstrained optimal terminal wealth, when the

state price density H ν̂(T ) is relatively low, the optimal terminal wealth is similar to the smooth

utility; when H ν̂(T ) increases above a critical value of the price density cz
y0

, that is, the boundary

point of the bad-states region, the optimal terminal wealth drops to 0 since the loss aversion

states a risk-seeking preference in the the domain of losses. To attain the VaR constraint, when

H ν̂(T ) is in the intermediate-states region, which is {max{ cLy0 ,
cz
y0
} ≤ H ν̂(T ) < H∗} for L ≥ θ or

{ czy0 ≤ H
ν̂(T ) < H∗} for L < θ, the optimal terminal wealth is equal to the protection level of VaR

constraint or is similar to the smooth utility. Xπ∗,λ
∗
(T ) may take a two-, three- or four-region form

for L ≥ z and may take a two- or three-region form for θ ≤ L < z and L < θ according to the

relative position of critical values of the state price, H∗, cL
y0

and cz
y0

for L ≥ θ or H∗, cz
y0

and cz̃
y0

for

L < θ, which are the boundary points of the bad-, intermediate- and good-states regions. In all
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cases, the optimal terminal wealth takes zero when the state price increases above the boundary

point of the bad-states region. Once the exact form is determined, Xπ∗,λ
∗
(T ) is assigned to different

wealth levels corresponding to the partition of the terminal market states with boundary points

H∗, cLy0 and cz
y0

for L ≥ θ or H∗, czy0 and cz̃
y0

for L < θ. The values of y0 in different forms of Xπ∗,λ
∗
(T )

are different. Denote by y20, y
3
0, y

4
0, ỹ

2
0, ỹ

3
0 the values of y0 determined by (4.4), (4.6), (4.7), (4.8) and

(4.9), respectively. It is easy to conclude that y20 < y40 < y30, y
2
0 < ỹ20 < y30 and y20 < ỹ20 < ỹ30 from

the budget constraint. With the help of these observations, we can design a simple algorithm to

find the optimal terminal wealth and the Lagrange multiplier.

Algorithm for finding the optimal terminal wealth and Lagrange multiplier.

Step 0 Find z > θ from equation (3.2). If L ≥ z, go to Step 1; if θ ≤ L < z, go to Step 1’; if L < θ,

go to Step 1”.

Step 1 Let Xπ∗,λ
∗
(T ) be given by (4.7) and compute y0 = y30 from (4.3). If y30 >

cz
H∗ , then Xπ∗,λ

∗
(T )

is the optimal terminal wealth with the Lagrange multiplier λ∗ = g2(y
3
0), stop. If y30 ≤ cz

H∗ ,

go to Step 2.

Step 1’ Let Xπ∗,λ
∗
(T ) be given by (4.7) and compute y0 = y30 from (4.3). If y30 >

cL
H∗ , then Xπ∗,λ

∗
(T )

is the optimal terminal wealth with the Lagrange multiplier λ∗ = g2(y
3
0), stop. If y30 ≤

cL
H∗ ,

go to Step 2’.

Step 1” Find θ < z̃ < z from equation (3.16). Let Xπ∗,λ
∗
(T ) be given by (4.9) and compute y0 = ỹ30

from (4.3). If ỹ30 >
cz̃
H∗ , then Xπ∗,λ

∗
(T ) is the optimal terminal wealth with the Lagrange

multiplier λ∗ = g2(ỹ
3
0), stop. If ỹ30 ≤

cz̃
H∗ , go to Step 2’.

Step 2 Let Xπ∗,λ
∗
(T ) be given by (4.6) and compute y0 = y40 from (4.3). If y40 >

cL
H∗ , then Xπ∗,λ

∗
(T )

is the optimal terminal wealth with the Lagrange multiplier λ∗ = g1(y
4
0), stop. If y40 ≤

cL
H∗ ,

go to Step 3.

Step 2’ Let Xπ∗,λ
∗
(T ) be given by (4.8) and compute y0 = ỹ20 from (4.3). If ỹ20 >

cz
H∗ , then Xπ∗,λ

∗
(T )

is the optimal terminal wealth with the Lagrange multiplier λ∗ = ĝ1(ỹ
2
0), stop. If ỹ20 ≤ cz

H∗ ,

go to Step 3.

Step 3 Let Xπ∗(T ) by given by (4.4). Then Xπ∗(T ) naturally satisfies the VaR constraint and is the

optimal terminal wealth with the Lagrange multiplier λ∗ = 0, stop.

Since λ∗ can be expressed as a function of y0 and λ∗ is related to H∗, which is determined by ε,

we use the superscript ε in place of λ∗ in Xπ∗,λ
∗
(T ) in the following analysis, that is, the optimal

terminal wealth is written as Xπ∗,ε(T ).

Remark 4.3. When the utility is a smooth concave increasing function, we can obtain the optimal

wealth process with the VaR constraint from Theorem 4.1 by setting θ = 0, which results in z = 0 and

cz = ∞. Guan and Liang (2016) apply the martingale method to derive it in a complete market.

If there are only two risky assets and the constraint set K is the whole space, then the optimal

terminal wealth is given by (4.6) with θ = 0 and ν̂ = (0, 0)>, which is the same as (3.20) in Guan

and Liang (2016).
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Remark 4.4. From Theorem 4.1 we can conclude that if ε = 0, then H∗ =∞, which implies that

all the bad states are insured against and the VaR constraint becomes the PI constraint. For L ≥ θ,
the optimal terminal wealth takes a two-region form given by (4.7) with H∗ =∞, that is

Xπ∗,0(T ) = (θ + I1(y0H
ν̂(T )))1{H ν̂(T )<

cL
y0
} + L1{H ν̂(T )≥ cL

y0
}. (4.10)

For L < θ, the optimal terminal wealth also takes a two-region form given by (4.9) with H∗ = ∞,
that is

Xπ∗,0(T ) = (θ + I1(y0H
ν̂(T )))1{H ν̂(T )<

cz̃
y0
} + L1{H ν̂(T )≥ cz̃

y0
}. (4.11)

If ε = 1, then H∗ = 0 and λ = 0, which implies that the VaR constraint vanishes. The optimal

terminal wealth Xπ∗,1(T ) is the same as (4.4), that is,

Xπ∗,1(T ) = Xπ∗(T ). (4.12)

Similar to the optimal terminal wealth under a smooth concave utility in Basak and Shapiro

(2001), in contrast to Xπ∗(T ), Xπ∗,ε(T ) is not modified in the good- and bad-states regions and

Xπ∗,ε(T ) is greater than or equals to the bound L in the intermediate-states region {max{ cLy0 ,
cz
y0
} ≤

H ν̂(T ) < H∗} for L ≥ θ or { czy0 ≤ H
ν̂(T ) < H∗} for L < θ in order to achieve the VaR constraint.

We next analyze how ε and L impact the optimal terminal wealth. Following Proposition 1 of

Basak and Shapiro (2001), we can deduce from the budget constraint (4.3) that for a fixed ε, y0
increases in L and the intermediate-states region grows at the expense of the good-states region.

Accordingly, to attain a higher protection level, the optimal terminal wealth in the good-states

region decreases. Similarly, for a fixed L, y0 decreases in ε. With ε decreasing, the intermediate-

states region {max{ cLy0 ,
cz
y0
} ≤ H ν̂(T ) < H∗} for L ≥ θ or { czy0 ≤ H ν̂(T ) < H∗} for L < θ enlarges

as more states need to be insured against, while the good-states region {H ν̂(T ) < max{ cLy0 ,
cz
y0
}}

for L ≥ θ or {H ν̂(T ) < cz
y0
} for L < θ and the bad-states region {H ν̂(T ) ≥ H∗} both shrink.

Furthermore, to meet the VaR constraint, the optimal terminal wealth in the good-states region

must decrease.

As shown in Theorem 4.1, the constrained optimal terminal wealth Xπ∗,ε(T ) takes different

forms depending on the relative position of critical values of state price H∗, cL
y0

and cz
y0

for L ≥ θ

or H∗, cz
y0

and cz̃
y0

for L < θ. We now analyze how ε determines the form of Xπ∗,ε(T ) for L ≥ z.

Denote by

ε∗ = P (Xπ∗(T ) < L) = P (H ν̂(T ) >
cL
y0

),

where Xπ∗(T ) is the unconstrained optimal terminal wealth given by (4.4) and y0 is determined by

the binding budget constraint (4.3). When ε ≥ ε∗, Xπ∗(T ) naturally satisfies the VaR constraint

and therefore, Xπ∗,ε(T ) is the same as Xπ∗(T ). When ε < ε∗, the VaR constraint is binding and the

uninsured loss-states region {H ν̂(T ) ≥ H∗} may take a one- or two-region form. More precisely,

the states in the region {H∗ ≤ H ν̂(T ) < max{H∗, czy0 }} have wealth in [z, L) and the states in the

region {H ν̂(T ) ≥ max{H∗, czy0 }} have wealth 0. Let

ε∗ = P (Xπ∗,ε(T ) < L) = P (H ν̂(T ) >
cz
y0

),
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whereXπ∗,ε(T ) is given by (4.7) withH∗ = cz
y0

and y0 is determined by the binding budget constraint

(4.3). When ε = ε∗, all the states with wealth in [z, L) are insured against and the manager leaves

all the states with wealth 0 uninsured. For ε ∈ (ε∗, ε∗), we have H∗ ∈ ( cLy0 ,
cz
y0

), which implies that

some states with wealth in [z, L) and all the states with wealth 0 are left uninsured, so Xπ∗,ε(T )

takes a two-region form in the loss-states region and takes a four-region form given by (4.6). For

ε ∈ (0, ε∗], we have H∗ ∈ [ czy0 ,∞), which implies that the manager chooses to leave some states

with wealth 0 uninsured, so Xπ∗,ε(T ) only takes 0 in the loss-states region and takes a three-region

form given by (4.7). From the above analysis, for a given ε ∈ [0, 1], we can specify the exact form

of Xπ∗,ε(T ) without resorting to the algorithm.

One disadvantage of the VaR constraint under a smooth concave utility is that it leads to higher

losses in bad market scenarios than in the case of no VaR constraint, see Basak and Shapiro (2001).

Loss aversion leads Xπ∗(T ) to be 0 in the region {H ν̂(T ) ≥ cz
y0
}. For a relatively large ε, a VaR

constraint brings higher losses for those states in the region (H∗, czy0 ), where the optimal terminal

wealth takes θ + I1(y0H
ν̂(T )). However, if ε is small enough such that H∗ ≥ cz

y0
, then we have

Xπ∗,ε(T ) ≥ Xπ∗(T ) in the region where Xπ∗(T ) ≤ L. Therefore, a VaR constraint with a relatively

small ε strictly improves risk management in bad economic states.

Figure 2: Probability density of optimal ter-

minal wealth with a relatively large ε

Figure 3: Probability density of optimal ter-

minal wealth with a relatively small ε

Figures 2 and 3 depict the distributions of Xπ∗,ε(T ) for L ≥ z with relatively large and small ε.

The distribution of the optimal terminal wealth is not continuous. There is a probability mass at L

when the VaR constraint is binding and there is a probability mass at 0 for ε > 0. For a relatively

large ε (see Figure 2), states with wealth 0 have a higher probability than that in case of no VaR

constraint and there are some states with wealth less than that in case of no VaR constraint, which

implies that a VaR constraint leads to more losses. However, for a relatively small ε (see Figure 3),

there are no states with wealth between (z, L) and states with wealth 0 have a lower probability

than that in case of no VaR constraint, which implies that the VaR constrained optimal terminal

wealth dominates the unconstrained one for bad economic states.

Similarly, for θ ≤ L < z, denote by

ε∗1 = P (Xπ∗(T ) < L) = P (H ν̂(T ) >
cz
y0

),

where y0 is determined by the binding budget constraint (4.3). When ε ≥ ε∗1, X
π∗(T ) given by
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(4.4) naturally satisfies the VaR constraint and Xπ∗,ε(T ) = Xπ∗(T ). Let

ε∗1 = P (Xπ∗,ε(T ) < L) = P (H ν̂(T ) >
cL
y0

),

where Xπ∗,ε(T ) is given by (4.8) with H∗ = cL
y0

and y0 is determined by the binding budget

constraint (4.3). For ε ∈ [ε∗1, ε
∗
1), we have H∗ ∈ ( czy0 ,

cL
y0

] and the pension manager insures against the

region { czy0 ≤ H
ν̂(T ) < H∗} by letting Xπ∗,ε(T ) = θ+ I1(y0H

ν̂(T )), so Xπ∗,ε(T ) takes a two-region

form given by (4.8). For ε ∈ (0, ε∗1), we have H∗ ∈ ( cLy0 ,∞) and the pension manager insures against

the regions { czy0 ≤ H ν̂(T ) < cL
y0
} and { cLy0 ≤ H ν̂(T ) < H∗} by letting Xπ∗,ε(T ) = θ + I1(y0H

ν̂(T ))

and Xπ∗,ε(T ) = L, respectively, so Xπ∗,ε(T ) takes a three-region form given by (4.7).

Figure 4: Probability density of optimal ter-

minal wealth with a relatively large ε

Figure 5: Probability density of optimal ter-

minal wealth with a relatively small ε

Figures 4 and 5 depict the distributions of Xπ∗,ε(T ) for θ ≤ L < z with relatively large and

small ε. The distribution of the optimal terminal wealth is not continuous. There is a probability

mass at 0 for ε > 0 and there is a probability mass at L for a relatively small ε. Comparing with

the case L ≥ z, a VaR constraint with any ε > 0 under the case θ ≤ L < z provides a genuine

improvement of the risk management for the loss states. Furthermore, relative to the unconstrained

optimal terminal wealth, a VaR constraint shifts the distribution of good states to the left.

Finally, for a given ε ∈ [0, 1] in the case L < θ, we identify the exact form of Xπ∗,ε(T ). When

ε ≥ ε∗1, we have

P (Xπ∗(T ) ≥ L) = P (H ν̂(T ) ≤ cz
y0

) = 1− ε∗1 ≥ 1− ε,

which implies Xπ∗(T ) given by (4.4) naturally satisfies the VaR constraint and Xπ∗,ε(T ) = Xπ∗(T ).

Let

ε̃∗1 = P (Xπ∗,ε(T ) < L) = P (H ν̂(T ) >
cz̃
y0

),

whereXπ∗,ε(T ) is given by (4.8) withH∗ = cz̃
y0

and y0 is determined by the binding budget constraint

(4.3). For ε ∈ [ε̃∗1, ε
∗
1), we have H∗ ∈ ( czy0 ,

cz̃
y0

] and the pension manager insures against the region

{ czy0 ≤ H ν̂(T ) < H∗} by letting Xπ∗,ε(T ) = θ + I1(y0H
ν̂(T )), so Xπ∗,ε(T ) takes a two-region form

given by (4.8). For ε ∈ (0, ε̃∗1), we have H∗ ∈ ( cz̃y0 ,∞) and the pension manager insures against the
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Figure 6: Probability density of optimal ter-

minal wealth with a relatively large ε

Figure 7: Probability density of optimal ter-

minal wealth with a relatively small ε

regions { czy0 ≤ H ν̂(T ) < cz̃
y0
} and { cz̃y0 ≤ H ν̂(T ) < H∗} by letting Xπ∗,ε(T ) = θ + I1(y0H

ν̂(T )) and

Xπ∗,ε(T ) = L, respectively, so Xπ∗,ε(T ) takes a three-region form given by (4.9).

Figures 6 and 7 depict the distributions of Xπ∗,ε(T ) for L < θ with relatively large and small ε.

Similar to the case θ ≤ L < z, a VaR constraint with any ε > 0 under the case L < θ also provides

a genuine improvement of the risk management for the loss states.

5 Numerical analysis

In this section, we do some numerical calculations to investigate the influence of a VaR constraint

on the optimal terminal wealth.

Assume that

U(x) =

{
−A(θ − x)γ1 , x < θ,

(x− θ)γ , x ≥ θ,
(5.1)

where A > 1, 0 < γ, γ1 < 1, and (5.1) is the S-shaped utility defined in Kahneman and Tversky

(1979). Assume that the financial market consists of three tradable assets, whose price processes

are modelled by (2.1)-(2.2) with n = 2, and σ11 = σ1, σ12 = 0, σ21 = ρσ2, σ22 =
√

1− ρ2σ2, ρ is

a correlation coefficient, and ξ = (ϑS1 ,
ϑS2−ρϑS1√

1−ρ2
)>, where ϑS1 = µ1−r

σ1
> 0, ϑS2 = µ2−r

σ2
> 0 are the

Sharpe ratios of risky assets S1 and S2, respectively. Let K = [0,∞)2, which means short selling

is not allowed. The positive polar cone of K is given by K̃ = [0,∞)2. To compute ξ̂ in (3.27), we

need to find the minimizer ν̂ ∈ K̃ of (3.26). The Kuhn-Tucker optimality condition implies there

exists a Lagrange multiplier u = (u1, u2)
> such that ν̂ and u satisfy the following set of equations:

2
σ1

( ν̂1σ1 + ϑS1)− 2ρ
(1−ρ2)σ1 ( ν̂2σ2 + ϑS2 − ρ( ν̂1σ1 + ϑS1))− u1 = 0,

2
(1−ρ2)σ2 ( ν̂2σ2 + ϑS2 − ρ( ν̂1σ1 + ϑS1))− u2 = 0,

uiν̂i = 0, ui ≥ 0, ν̂i ≥ 0, i = 1, 2.
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Solving the above equation gives

ξ̂ =


(
ϑS1 ,

ϑS2−ρϑS1√
1−ρ2

)>
, ϑS2 > ρϑS1 , ϑS1 > ρϑS2 ,

(ϑS1 , 0)>, ρϑS1 ≥ ϑS2 ,

(ρϑS2 ,
√

1− ρ2ϑS2)>, ρϑS2 ≥ ϑS1 .

Note that when K = (−∞,∞)2, we have K̃ = {(0, 0)>} and ξ̂ = ξ, which is different from the case

K = [0,∞)2. Therefore, the trading constraint impacts the optimal terminal wealth through the

pricing kernel H ν̂(T ).

For all numerical computations, the benchmark data used are the following: r = 0.02, c(t) =

0.1, x0 = 35, L = 80, µ1 = 0.06, µ2 = 0.065, σ1 = 0.3, σ2 = 0.4, ρ = 0.5, T = 40, θ = 40, A =

2.25, γ1 = 0.2, γ = 0.4. From (3.2), we have z = 45.3.
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Figure 8: Xπ∗,ε(T ) versus H ν̂(T ) for differ-

ent ε with L > z
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Figure 9: Xπ∗,ε(T ) versus H ν̂(T ) for differ-

ent ε with θ ≤ L < z

Figure 8 shows the optimal terminal value Xπ∗,ε(T ) versus H ν̂(T ) for different ε with L = 80.

We see that Xπ∗,ε(T ) takes a two-, three- or four-region form according to the value of ε. When

ε decreases, the intermediate-states region enlarges while the good- and bad-states regions both

shrink. In order to meet the protection level in the intermediate-states region, the VaR constraint

leads to a decrease in the optimal terminal wealth of good states. We also note that Xπ∗(T ) =

Xπ∗,1(T ) is dominated byXπ∗,0.01(T ) in the region whereXπ∗(T ) < L, whileXπ∗,0.1(T ) is dominated

by Xπ∗(T ) in the region where Xπ∗,0.1(T ) < L, which numerically confirms the result presented in

Section 4: when L ≥ z, a VaR constraint with a relatively small ε can reduce risk exposure in bad

market conditions whereas with a relatively large ε can incur heavier losses.

Figure 9 shows the optimal terminal value Xπ∗,ε(T ) versus H ν̂(T ) for different ε with L = 45.

As shown in Theorem 4.1, Xπ∗,ε(T ) takes a two- or three-region form according to the value of ε

in case of θ ≤ L < z. It is observed that similar to the case L > z, the VaR constraint leads to

a decrease in the optimal terminal wealth of good economic states. Furthermore, unlike the case

L ≥ z, Xπ∗(T ) in the bad-states region is dominated by the constrained optimal terminal wealth

Xπ∗,ε(T ), which is consistent with the result presented in Section 4: when θ ≤ L < z, a VaR

constraint can improve risk management for the bad-economic states.
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Figure 10: Xπ∗,ε(T ) versus H ν̂(T ) for differ-

ent ε with L < θ
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Figure 11: Xπ∗,0.01(T ) versus H ν̂(T ) for dif-

ferent (L, θ)

Figure 10 plots the optimal terminal value Xπ∗,ε(T ) versus H ν̂(T ) for different ε with L = 80

and θ = 200. We observe that, as shown in Theorem 4.1, Xπ∗,ε(T ) takes a two- or three-region

form according to the value of ε in case of L < θ. It is noted that similar to the case L ≥ θ, the

VaR constraint also leads to a decrease in the optimal terminal wealth of good economic states.

Furthermore, we can observe that, as pointed out in Section 4, a VaR constraint can also provide

a genuine improvement of the risk management for the loss states in case of L < θ.

Figure 11 presents the optimal terminal wealth Xπ∗,0.01(T ) versus H ν̂(T ) for different L and

θ. We observe that the bad-states region {H ν̂(T ) ≥ H∗} for different L remains unchanged, due

to H∗ only depending on ε and the distribution of H ν̂(T ), that the intermediate region increases

with L at the expense of the good-states region as more states need to be insured against, and

that Xπ∗,0.01(T ) in the good-states region decreases to attain a higher L in the intermediate region.

It is noted that Xπ∗,0.01(T ) with a lower L is dominated by that with a higher L in the region

where both the optimal terminal wealth value are below the higher protection level, which implies

that a higher protection level leads to a lower left tail risk for a small ε. We can also see that for

(L, θ) = (80, 200), the manager is not sure to obtain this relatively high reference point. Therefore,

the manager takes a more conservative allocation strategy to attain the VaR constraint, which

illustrates that a VaR constraint can well protect the members’ benefits when the reference point

is too high.

Table 1 lists some probabilities, expectations, standard deviations, conditional expectations and

quantile values at low end and high end of Xπ∗,ε(T ) for different ε with L = 80 and different (L, θ)

with ε = 0.01. Numerical results further illustrate different forms of the optimal terminal wealth

according to the value of ε presented in Section 4: for ε ≥ ε∗ = 0.366, the VaR constraint is not

binding and Xπ∗,ε(T ) = Xπ∗(T ) takes either 0 or in (z,∞); for 0.061 = ε∗1 < ε < 0.366, Xπ∗,ε(T )

takes either 0 or L or in (z, L) or in (L,∞); for 0 < ε ≤ 0.061, Xπ∗,ε(T ) takes either 0 or L or

in (L,∞); and for ε = 0, Xπ∗,0(T ) takes either L or in (L,∞). We observe that for a fixed θ, the

probability P (Xπ∗,ε(T ) = L) decreases in ε and increases in L, which is in line with what has been

discussed in Figures 8 and 11: when ε decreases or L increases, more states need to be insured

against and therefore the intermediate-states region grows at the expense of unmodified regions.
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Table 1: (conditional) expectations, standard deviations, quantile values and probabilities

(ε, L)
ε (L = 80) (L, θ) (ε = 0.01)

1 0.1 0.01 0 (45,40) (80,40) (80,200)

mean 248.68 227.28 147.20 111.85 224.78 111.85 130.01

std dev 627.21 547.53 275.04 150.61 550.56 271.04 108.29

0.1 quantile 49.67 48.46 80 80 48.5 80 80

0.9 quantile 506.39 448.09 247.44 155.71 449.78 247.44 253.60

P (Xπ∗,ε(T ) = 0) 0.047 0.056 0.01 0 0.01 0.01 0.01

P (Xπ∗,ε(T ) ∈ (z, L)) 0.319 0.044 0 0 0 0 0

P (Xπ∗,ε(T ) = L) 0 0.3 0.567 0.719 0.041 0.567 0.73

P (Xπ∗,ε(T ) > L) 0.634 0.6 0.423 0.281 0.949 0.423 0.26

E(Xπ∗,ε(T )|Xπ∗,ε(T ) > L) 392.18 335.18 240.59 193.25 234.97 240.59 275.11

We observe from Table 1 that the expectation and the standard deviation decrease in L and

increase in ε, respectively, which implies that in order to achieve the VaR constraint with a smaller

ε or a higher protection level L, the manager takes more prudent strategies such that Xπ∗,ε(T )

becomes less volatile. The quantile value at high end decreases in L and increases in ε, consistent

with the observations from Figures 8 and 11: the optimal terminal wealth in good states decreases

in L and increases in ε. For ε = 0.01, the quantile value at low end increases with L, since the

optimal terminal wealth with a lower L in the loss states is dominated by that with a higher L

for a relatively low ε, which has been revealed in Figure 11. However, there is no monotonicity

in ε for the quantile value at low end since a VaR constraint leads to more losses for a relatively

high ε. We note that different from the expectation, a stronger protection (with a higher L or a

smaller ε) does not necessarily lead to a decrease in the conditional expectation. For L = 80, a

smaller ε leads to a lower right tail risk and a smaller conditional expectation, consistent with the

observation from Figure 8: the optimal terminal wealth with a lower ε in good states is dominated

by that with a higher ε. However, for ε = 0.01, the conditional expectation increases with L. The

reason is that as observed from Figure 11, changing L does not lead to monotone changes in the

optimal terminal wealth in good states. We can also see that for a fixed L = 80, as explained

in Figure 11, a relatively high reference point θ leads the manager to invest much more money

in the riskless asset since the manager is not sure to achieve it. Therefore, the optimal terminal

wealth with θ = 200 has a less standard deviation, a lower probability P (Xπ∗,ε(T ) > L) and a

higher probability P (Xπ∗,ε(T ) = L). However, the expectation and the 0.9 quantile value are not a

monotonic function of θ. This is due to two effects: the first effect is that Xπ∗,ε = θ+ I1(y0H
ν̂(T ))

is an increasing function of θ and a decreasing function of y0. The second effect is that y0 increases

with θ.

Figure 12 represents the relationship between the constrained and unconstrained expectations

of the optimal terminal wealth and σ1. We can see that the unconstrained expectation is greater

than the constrained one, in line with the observations in Table 1, which is due to the fact that

the VaR constraint makes the manager to invest less in the risky assets. Both expectations are

decreasing functions of σ1. The reason is that when the volatility σ1 increases, the Sharpe ratio

decreases, which leads to less investment in the first risky asset and overall lower expectation of
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Figure 13: E[Xπ∗,ε(T )] versus r for different

(γ1, γ, ε)

the optimal terminal wealth, consistent with economic intuition.

Figure 13 displays the impact of r on the expectation of the optimal terminal wealth for different

γ1, γ and ε. The parameters γ1 and γ control the curvature of the S-shaped utility in the domain of

losses and gains, respectively. We can see that the expectation decreases with γ1 while increases with

γ. These two parameters show diversified characteristics of the investor’s behavior. Specifically,

the manager has different attitudes towards risk in different scenarios. The effect of greater risk

seeking in the domain of losses, measured by a lower γ1, leads to more investment in risky assets,

whereas the effect of higher risk aversion in the domain of gains, measured by a lower γ, leads to

less investment in risky assets. The relation of E[Xπ∗,ε(T )] and r is more complicated. An increase

in r is good for investment in riskless assets but bad for investment in risky assets due to decreasing

Sharpe ratio. The overall impact of r on E[Xπ∗,ε(T )] is determined jointly by these two opposite

effects, depending on the level of VaR constraint and other parameters. For example, in the case

of ε = 0.05, a strong VaR constraint, E[Xπ∗,0.025(T )] increases with r, but in the case of ε = 0.2, a

weak VaR constraint, E[Xπ∗,0.2(T )] decreases first and then increases with r, displaying a “smile”

shaped relation, see Figure 13.

6 Conclusions

In this paper, we investigate the optimal portfolio selection problem under loss aversion and with

trading and VaR constraints. The analysis is applied to study the optimal asset allocation for a DC

pension plan. We solve the problem in two steps: First, we solve the unconstrained optimization

problem (2.8) with a fixed Lagrange multiplier. By using a concavification technique and a dual

control method, we find the unique pricing kernel in the presence of closed convex cone control

constraints and derive the optimal terminal wealth by solving a terminal static optimization problem

in the same way as in the complete market case. We also derive the representations of the optimal

wealth process and the optimal trading strategy in terms of the dual value function, its derivatives,

and the optimal dual state process via the relationship between the primal and dual optimization

problems. Second, we solve the constrained optimization problem (2.7) by finding the solutions

of two coupled nonlinear equations (binding budget and VaR constraints). We propose a simple
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algorithm to constructively compute the initial dual state value and the Lagrange multiplier which

are used to find the optimal terminal wealth. Theoretical and numerical results show that the VaR

constraint has significant impact on the distribution of optimal terminal wealth and may provide

an effective improvement in bad states due to loss aversion. There remain many open questions

for optimal allocation of a DC pension plan, for example, the DC contribution rate c(t) may be

modelled by a stochastic process, the financial market may include some credit-related products,

the S-shaped utility maximization may have multiple terminal and intertemporal VaR constraints.

We leave these and other questions for future research.

A Appendix

We give a useful result which is used in constructing the concave envelope of Ũλ.

Lemma A.1. Let 0 ≤ z1 ≤ z2 < z3 be given constants and f be right continuous on [z1,∞)

satisfying

1. f is concave on intervals [z1, z2) and (z3,∞),

2. f(x) ≤ k(x− z2) + f(z2) on [z1, z3] with k = f(z3)−f(z2)
z3−z2 ≥ f ′+(z3) > 0,

where f
′
+ is the right derivative of f at z3. Then the concave envelope of f is given by

f c(x) =


f(x), z1 ≤ x < z2,

k(x− z2) + f(z2), z2 ≤ x < z3,

f(x), x ≥ z3.
(A.1)

In particular, for z1 = z2, the concave envelope of f is given by

f c(x) =

{
k(x− z1) + f(z1), z1 ≤ x < z3,

f(x), x ≥ z3.
(A.2)

Proof. By definition f c ≥ f. Let g be concave with g ≥ f. Then g ≥ f c on [z1, z2)∪ [z3,∞). Assume

x = uz2 + (1− u)z3 ∈ (z2, z3) for u ∈ (0, 1). By concavity of g, we have

g(x) ≥ ug(z2) + (1− u)g(z3) ≥ uf(z2) + (1− u)(k(z3 − z2) + f(z2)) = f(z2) + k(x− z2) = f c(x).

It remains to prove that f c is concave. Let z1 ≤ x0 < x1 < ∞ and xu = ux0 + (1 − u)x1 with

u ∈ (0, 1). It is easy to conclude that if x1 ≤ z2, or x0 ≥ z3, and or z2 ≤ x0 < x1 ≤ z3, then

f c(xu) ≥ uf c(x0) + (1− u)f c(x1).

If z2 ≤ x0 ≤ z3 ≤ x1, then we have

f c(x0) = k(x0 − z2) + f(z2), f
c(z3) = k(z3 − z2) + f(z2). (A.3)

Note that by concavity

f c(x1) = f(x1) ≤ f
′
+(z3)(x1 − z3) + f(z3) ≤ k(x1 − z3) + f(z3) = k(x1 − z2) + f(z2). (A.4)
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Equations (A.3) and (A.4) imply that the slope of the line through (z3, f
c(z3)) and (x1, f

c(x1)) is

less than the slope of the line through (x0, f
c(x0)) and (x1, f

c(x1)), that is,

f c(x1)− f c(x0)
x1 − x0

≥ f c(x1)− f c(z3)
x1 − z3

. (A.5)

If xu ∈ (z2, z3), then

f c(xu) = k(xu − z2) + f(z2) = k(u(x0 − z2) + (1− u)(x1 − z2)) + f(z2)

= uf c(x0) + (1− u)(k(x1 − z2) + f(z2)) ≥ uf c(x0) + (1− u)f c(x1),

where the last inequality follows from (A.4).

If xu ∈ (z3,∞), then

f c(xu) ≥ f c(x1)− f c(z3)
x1 − z3

(xu − x1) + f c(x1)

≥ f c(x1)− f c(x0)
x1 − x0

(xu − x1) + f c(x1)

= uf c(x0) + (1− u)f c(x1).

where the first inequality holds since f c(x) is concave on [z3,∞), and the second inequality follows

from (A.5). Therefore, we can conclude that f c is concave on [z2,∞).

If z1 ≤ x0 ≤ z2 ≤ x1, then we have

f c(x0) ≤ k(x0 − z2) + f c(z2), f
c(z2) < f c(x1) ≤ k(x1 − z2) + f c(z2),

which implies that the slope of the line through (x0, f
c(x0)) and (x1, f

c(x1)) is less than the slope

of the line through (x0, f
c(x0)) and (z2, f

c(z2)), and is greater than the slope of the line through

(z2, f
c(z2)) and (x1, f

c(x1)), that is,

f c(x1)− f c(z2)
x1 − z2

≤ f c(x1)− f c(x0)
x1 − x0

≤ f c(z2)− f c(x0)
z2 − x0

. (A.6)

If xu ∈ (z2, x1), then

f c(xu) ≥ f c(x1)− f c(z2)
z2 − x1

(xu − x1) + f c(x1)

≥ f c(x1)− f c(x0)
z2 − x1

(xu − x1) + f c(x1)

= uf c(x0) + (1− u)f c(x1),

where the first inequality holds from the fact that f c is concave on [z2,∞), and the second inequality

follows from (A.6).

If xu ∈ (x0, z2), then by concavity

f c(xu) ≥ f c(z2)− f c(x0)
z2 − x0

(xu − x0) + f c(x0)

≥ f c(x1)− f c(x0)
x1 − x0

(xu − x0) + f c(x0)

= uf c(x0) + (1− u)f c(x1),

which concludes the proof.
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Proof of Proposition 3.1

Proof. Since L ≥ z, we have cz ≥ k0 = U1(L−θ)+U2(θ)
L ≥ cL, which yields kλ ≥ k0 ≥ cL for λ ≥ 0.

Case I: When kλ > cz, we have that Ũλ(x) ≤ kλx− U2(θ) for 0 ≤ x ≤ L and Ũλ(x) is concave

on (L,∞). Then Lemma A.1 yields the concave envelope of Ũλ given by (3.7)(see Figure 14). It is

easy to obtain the superdifferential of Ũ cλ(x) as follows:

(Ũ cλ)′(x) =


[kλ,∞), x = 0,

{kλ}, 0 < x < L,

[cL, kλ) , x = L,

{Ũ ′λ(x)}, x > L.

(A.7)

Then we can find the point x∗,λ(y) ∈ {x|Ũλ(x) = Ũ cλ(x)} solving both (3.1) and (3.4) for which 0

is in the superdifferential of Ũ cλ(x)− xy given by (3.8).

z L

0

Figure 14: Concave envelope of Ũλ,Ũ cλ for

kλ > cz

z L
0

L

0

Figure 15: Concave envelope of Ũλ,Ũ cλ for

kλ ≤ cz

Case II: When cL ≤ kλ ≤ cz, we let L0 be the tangent point of the straight line starting at

(L,U1(L − θ) + λ) to the curve U1(x − θ), θ ≤ x ≤ L (see Figure 15). Straightforward calculation

shows that there exists a unique solution L0 in the interval [z, L] to the equation (3.11). Lemma

A.1 gives the concave envelope of Ũλ represented by (3.9). Similar to deriving (3.8), one can easily

find x∗,λ(y) given by (3.10).

Proof of Proposition 3.2

Proof. Since θ ≤ L < z, we have k0 = U1(L−θ)+U2(θ)
L < cL.

Case I: If kλ ≥ cL, then the expressions for Ũ cλ(x) and x∗,λ(y) are the same as those in Case I

of Proposition 3.1(see Figure 16).

Case II: If kλ < cL, then we let z0 be the tangent point of the straight line starting at (0,−U2(θ))

to the curve U1(x − θ) + λ, x ≥ θ (see Figure 17). It is easy to verify that there exists a unique

solution L < z0 ≤ z to the equation (3.15) and Ũλ(x) ≤ cz0x− U2(θ) for 0 ≤ x < z0. From Lemma

A.1, the concave envelope of Ũλ is given by (3.13). Then one can easily derive x∗,λ(y) given by

(3.14) by using the same arguments as in deriving (3.8).
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L

0

Figure 16: Concave envelope of Ũλ,Ũ cλ for

kλ ≥ cL

L z
0

0

Figure 17: Concave envelope of Ũλ,Ũ cλ for

kλ < cL

Proof of Proposition 3.3

Proof. Since L < θ < z̃ < z, we have k0 < cz < cz̃.

Case I: If kλ > cz̃, then Lemma A.1 yields that Ũ cλ(x) given by (3.17) (see Figure 18). Similar

to deriving (3.8), we can find the maximizer x∗,λ(y) ∈ {x|Ũλ(x) = Ũ cλ(x)} given by (3.18) solving

both for which 0 is in the superdifferential of Ũ cλ(x)− xy given by (3.8).

Case II: If kλ ≤ cz̃, then we let z̃0 be the tangent point of the straight line starting at (0,−U2(θ))

to the curve U1(x− θ) + λ, x ≥ θ. It is easy to verify that there exists a unique solution z ≤ z̃0 ≤ z̃
to (3.15) and Ũλ(x) ≤ cz̃0x− U2(θ) for 0 ≤ x < z̃0. From Lemma A.1, the concave envelope of Ũλ
is given by (3.13) (see Figure 19). Then from Case II in Proposition 3.2, the maximizer x∗,λ(y) is

given by (3.14).

Figure 18: Concave envelope of Ũλ,Ũ cλ for

kλ ≥ cz̃
Figure 19: Concave envelope of Ũλ,Ũ cλ for

kλ < cz̃

The optimal wealth and portfolio processes
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Using Theorem 3.7, we can easily derive the optimal wealth process Xπ∗,ε and the optimal

control process π∗,ε. The expressions are different but similar for L ≥ z, θ ≤ L < z and L < θ. To

simplify notations and avoid repetitions, we denote Φ the cumulative standard normal distribution

function, ϕ the standard normal density function, and define the following functions:

h(u,w, t) ≡
∫ d1(u,w,t)

−∞
(θ + I1(we

η(x,t)))eη(x,t)ϕ(x)dx

h(u,w, t) ≡
∫ d1(u,w,t)

−∞
(θ + I1(we

η(x,t)))eη(x,t)(x− 1)ϕ(x)dx

ψ(u,w, t) ≡ (α(t)− 1)Φ(d3(u,w, t))− ϕ(d3(u,w, t)),

where d3(l, w, t) = (ln(l/w) + β(t))/α(t), α(t), β(t) are defined by (3.37), η(t, x) = α(t)(x − 1) −
β(t), d1(l, w, t) = d3(l, w, t) + 1. Denote by L(t) = Le−r(T−t). We can now give an explicit

characterization of the optimal wealth process Xπ∗,ε and the optimal control process π∗,ε.

Proposition A.1. Assume that ν̂ ∈ K̃ is the unique minimizer of (3.26), ξ̂ 6= 0, z is the solution

to (3.2), and x0 + C(0) > E[LH ν̂(T )1{H ν̂(T )≤H∗}], where H∗ solves (4.1) for 0 ≤ ε ≤ 1. Then for

the optimization problem (2.7), the optimal wealth Xπ∗,ε(t) and the optimal control π∗,ε(t) at time

t for 0 ≤ t ≤ T are given by

Xπ∗,ε(t) = A(y0, y0H
ν̂(t), t)

π∗,ε(t) = −(σ>)−1ξ̂B(y0, y0H
ν̂(t), t) ∈ K,

where y0 is determined by the equation

A(y0, y0, 0) = x0

and A and B are given by the following:

1. If L ≥ z, then

A(y0, w, t) = 1{H∗≤ cL
y0
}h(cz, w, t) + 1{ cL

y0
<H∗< cz

y0
}

(
h(cz, w, t)− h(y0H

∗, w, t)
)

+1{H∗> cL
y0
}

(
L(t)(Φ(d3(y0H

∗, w, t))− Φ(d3(cL, w, t))) + h(cL, w, t)
)
− C(t)

B(y0, w, t) = 1{H∗≤ cL
y0
}h(cz, w, t) + +1{ cL

y0
<H∗< cz

y0
}

(
h(cz, w, t)− h(y0H

∗, w, t)
)

+ 1{H∗> cL
y0
}

(
L(t)(ψ(y0H

∗, w, t)− ψ(cL, w, t)) + h(cL, w, t)
)
.

2. If θ ≤ L < z, then

A(y0, w, t) = 1{H∗≤ cz
y0
}h(cz, w, t) + 1{H∗≥ cL

y0
}L(t)

(
Φ(d3(y0H

∗, w, t))− Φ(d3(cL, w, t))
)

+ 1{H∗> cz
y0
}h(min{cL, y0H∗}, w, t)− C(t)

B(y0, w, t) = 1{H∗≤ cz
y0
}h(cz, w, t) + 1{H∗≥ cL

y0
}L(t)

(
ψ(y0H

∗, w, t)− ψ(cL, w, t)
)

+ 1{H∗> cz
y0
}h(min{cL, y0H∗}, w, t).
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3. If L < θ, then

A(y0, w, t) = 1{H∗≤ cz
y0
}h(cz, w, t) + 1{H∗> cz̃

y0
}L(t)

(
Φ(d3(y0H

∗, w, t))− Φ(d3(cz̃, w, t))
)

+ 1{H∗> cz
y0
}h(min{cz̃, y0H∗}, w, t)− C(t)

B(y0, w, t) = 1{H∗≤ cz
y0
}h(cz, w, t) + 1{H∗> cz̃

y0
}L(t)

(
ψ(y0H

∗, w, t)− ψ(cz̃, w, t)
)

+ 1{H∗> cz
y0
}h(min{cz̃, y0H∗}, w, t).
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